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A thermodynamically consistent procedure is proposed based on successive excess free energy 
expansions which leads to flexible equations expressing the concentration dependence of activity 
coefficients. In first approximation, equations of two-suffix type are deduced which describe 
muIticomponent systems by means of binary constants free of restraining conditions and 
which lead, after introducing simplifying assumptions, to Renon- Prausnitz NRTL, Black, 
Wohl-van Laar and Wohl-Margules equations. 

Vapour-liquid equilibrium data are usually reduced to thermodynamic functions (excess free 
energy of mixing and activity coefficients) and adjusted to give meaningful correlations and 
generalizations. Many equations have been proposed for expressing the composition and temper
ature dependence of the activity coefficients. Well known are the Margules l , van Laar2 (in Carl
son-Colburn modification3

), Scatchard- Hamer4 and Redlich- Kister S types. Woh16 ,7 showed 
that a series expansion of exess free energy in effective volume fractions leads after introducing 
'certain simplifying conditions to all these equations. 

Wohl deduced as first approximation equations of "two-suffix type" which describe behaviour 
of mixture by means of binary constants only. The most simple symmetrical or regular equation 
characterizes the M-component system with the aid of O'5M(M-1) constants which all can be 
evaluated from binary eXPerimental data (i.e. binary system is described by means of one constant , 
ternary system by means of three constants etc.). 

Unfortunately, the practical experience shows that' regular equations are not sufficient to 
characterize quantitatively the majority of binary systems and to predict the behaviour of three
and more-component systems. Wohl's nonsymetrical two-suffix type, which is fully' equivalent to 
van Laar equation, describes the M-corrlponent system by means of M(M-l) constants (i. e. binary 
system be means of two constants, ternary system by means of six constants etc.). Practical 
experience shows that van Laar equation is flexible and able to characterize many (but not all) 
binary systems8 ,9. Its ability to predict behaviour of three- and more-component systems from 
binary data can be estimated as semiquantitative. 

It follows from the preceeding discussion that simple two-suffix equations are not fully con
venient for the correlation of binary data and not sufficient for the quantitative prediction of be
haviour of multicomponent systems by means of binary constants. For this reason, new procedures 
have been looked for to improve the flexibility and the prediction ability of the correlation 
equations. WohI6 ,7, Redlich-KisterS and HalalO introduced the third and higher terms from 
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excess free energy series expasion and deduced -equations of three-, four- and hirgher-suffix type. 
Many but not all constants of these equations can .be evaluated from binary data. Ternary, 
eventually quarternary experimental data are necessary for the quantitative characterization 
of multicomponent systems (details seell). Three- and four-suffix procedure is fully justified 
from the phenomenological point of view. The resulting equations are thermodynamically consis
tent and their flexibility is better than in the case of two-suffix types. From the molecular point 
of view, the justification of three- and four-suffix equations is questionable. The statistical theories 
of liquid mixtures are based on binary molecular interactions12 . This fact leeds to the logical 
deduction that behaviour of multicomponent systems should be (at least in many cases) predicted 
from the known behaviour of binary mixtures. For this reason new types of more flexible equations 
(with binary constants only) have been looked for. In 1964 Wilson13 derived an equation using a 
procedure which is in certain sence generalization of Flory-Huggins theory. His equation has two 
adjustable constants per binary system and its flexibility and ability to predict the behaviour 
of three- and more-component systems is very good, as it has been practically shownl4. It must 
be mentioned that Wilson equation is not applicable to partially miscible liquid mixtures. 
To overcome this difficulty, Renon and Prausnitz15 -18 combined Wilson's local mole fraction 
concept with Scott's two liquid theory of mixture19 and derived NRTL equation (Non Random
Mixing Two-Liquid) which has three adjustable parameters per binary system. NRTL equation 
is very flexible, can be used for systems with limited miscibility and extended to mixtures of more 
than two components . Extensive practical tests have shown15 ,20,21 that its flexibility is excellent 
and its ability to predict behaviour of multicomponent systems good. 

It must be, however, taken into account that certain restraining conditions must be fulfilled 
between constants of both van Laar and Wilson and NRTL equation in three- and more-com
ponent systems if we wish to be consistent with the theoretical modeJs22

. This fact complicates 
the practical use of the just named equations. 

It is shown in this contribution that a general procedure can be developped based on 
superponed excess free energy expansions which leads to flexible equations expressing 
the concentration dependence of activity coefficients. 

Excess Free Energy of Superponed Type 

As first approximation, equations of "two-suffix successive type" can be deduced 
which describe multicomponent system by means of binary constants free of restrain
ing conditions. Let us suppose that excess free energy of the M-component system 
can be expressed as a set of particular contributions 

M 

/lGE/RT = I Qr' (1) 
r=1 

where /lGE is excess free energy of mixing, T absolute temperature and R gas constant. 
Each term of the sum, Q., is function of comp9sition, temperature, pressure and total 
number of mol es (Qr is extensive property of the system). Its concentration depen
dence can be expressed with the aid of specific concentratiop. variables, (Zj)., defi
ned by 

M 

(Zj)r = nj(qj)r/I nlqj)r, (2) 
j=1 
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where nj, nj are numbers of mol of component, i, j and (qj)" (qj)r constants charac
teristic for the component i, j in the particular term Qr. The sum of effective fractions 
of all components is equal to unity 

(3) 

Let us now define an intensive excess' function Q; and express its concentration 
dependence by means of series expansion. Since in the limit for (Zj)r = 1; (i = 1,2, ... 
. . . , M) Q; is equal to zero, all single index terms of the series vanish and the depen
dence on composition can be written in the form 

M 

Q; = Q/i, nlqj)r = L (Zj)r (Zj)r (ajj)r + ... , (4) 
j=l jj 

where (ajj)r are constants and the summation gives the sum of the products of the 
concentration variables (Zj)r (Zj)r of all pair dissimilar constituents that can be chosen 
from the given M-component system, where each product is multiplied by a constant 
(ajj)r. For example in a binary system 

I (Zj)r (Zj)r (aij)r = (Zl)r (zz)r (alz)r + (ZZ)r (Zl)r (aZI)r = 2(ZI)r (ZZ)r (aIZ)r, 
jj (5) 

since (a12)r = (aZI)r' Similarly for a ternary system 

+ (Zl)r (Z3)r (a13)r + (Z3)r (Zl)r (a31)r + (zz)r (Z3)r (a Z3 )r + 
+ (Z3)r (zz)r (a 3z)r = 2(ZI)r (zz)r (alz)r + 
+ 2(Zl)r (Z3)r (a 13)r + 2(zz\ (Z3)r (a Z3)r ' 

Binary System 

(6) 

We consider as a first example the derivation of two-suffix equation for a binary 
system. According to Eqs (1) and (4) 

~GEIRT = QI + Qz = [nl(qZ)1 + nZ(qZ)I] (Zl)l (ZZ)l 2(a IZ)1 + 
+ [n1(qlh + nz(qz)z] (ZI)Z (zz)z 2(a12)Z' (7) 

If we introduce new constants 

(AIZ)1 = 2(a 12)1 (ql)l , 

(A12h = 2(a 12)z (qlh ; 

(AZI)1 = 2(a12)1 (qZ)1 , 

(Azlh = 2(a 12h (qz)z , 

(8) 
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we can write 

(9) 

The relations giving the dependence of the activity coefficients on the composition 
of the solution are obtained by partial differentiation of the excess free energy accord
ing to n l and nz 

(10) 

Equations (9) and (10) contain four constants, i.e. (A 12)1' (AZl)l, (A 12)z, (AZl)z 
which must be evaluated from experimental measurements and which are connected 
with the limiting values of the natural logarithm of the activity coefficient 

lim In 11 = (A 12)l + (A 12)z , (11) 
Xt-+O 

lim In 12 = (AZl)l + (AZlh . 
X2-0 

By introducing various simplifying assumptions equations (9) and (10) are converted 
to relations derived previously by various authors. Thus, if we introduce 

'tZl = (AlZ)l , 't 12 = (A21h (12) 

GZI = (A 2l )1!(A12)1 , G12 = (AlZ)z!(Azl)z , 

equations (9) and (10) take the form of Renon-Prausnitz NRTL type15
,16 which 

constains three freely adjustable parameters. The fourth is given by means of equation 

If we assume that 

(A 12)l In [(A 12)1!(A21)lJ 
(A 2l )Z = In [(AZlh!(Ad2J 

(13) 

(14) 

relations (9) and (10) degenerate into Black equationz3
• On the assumption that , 

(15) 
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equations (9) and (10) take the form of Wohl twosuffix type6 •7 which is fully equiva
lent to van Laar equation (in Carlson-Colburn modification3

). Finally, if 

(A 12)1 = (A 21)1 = A, 

(Ad2 = (A 21 )2 = 0, 

equations further simplify to Wohl-Margules symmetrical form 7
•
13

• 

Ternary and Muiticomponent Systems 

Equation (1) has in the ternary system the following form 

k 

/'l.GEjRT= L Qr = Qi + Qj + Qk' 
r=i 

where 

Qr = [n;(qi)r + n/qj)r + nk(qk)r]' 

(16) 

(17) 

. [(Zi)r (Zj)r 2(aij)r + (Zi)r (Zk)r 2(aik\ + (Zj), (Zk)r 2 (ajk)r] . (18) 

If we introduce new constants 

(Aij)r = 2(aij)r (qi)" 

(Aik)r = 2(aik). (qi)r, 

(Ajk)r = 2(ajk)r (qj)r, 

we can rearrange Eqs (18) and (1) and write 

(Aji)r = 2( au)r (qj)" 

(Aki)r = 2(aik)r (qk)" 

(Akj)r = 2(ajk)r (qk)" 

Qr = n;(zj)r (Aij)r + n;(zk)r (Aik)r + n/zk)r (Ajk)r , 

/'l.GEjRT = ni(Zj)i (Aij)i + n;(zk)i (Aik)i + n/zk)i (Ajk)i + 

+ n/zk)j (Ajk)j + n/zi)j (Aji)j + nk(zi)j (Aji)j + 

+ nk(zi)k (Aki)k + nk(Zj)k (Akj)k + ni(Zj)k (Aikh· 

(19) 

(20) 

(21) 

It must be mentioned that five constants defined for each term Qr by Eq. (19) are 
free. The sixth fulfils the restraining condition 

(22) 
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It follows from Eqs (19), (21) and (22) that the general form of the two-suffix 
equation has the same disadvantag~ as equations' proposed by Wohl (van Laar), 
Black and Renon-Prausnitz NRTL, i.e., that constants evaluated from binary datll 
can not be used directly to the characterization of three-component systems. The 
entire adjustment must be made in such a way that restraining condition (22) is ful
filled. In this situation it is, however, possible to take into account the very high 
flexibility of the two-suffix superponed equation (21). If we suppose that the con
stant (Ajk)r is very small, (Akj)r must be also very small, as it follows from Eq. (22) 

(23) 

and the three-component system is characterized by means of twelve binary constants 
which are fully free and which can be evaluated from binary experimental data. 
Equation (21) degenerates in conection with condition (23) into the form 

flGE!RT = n/zj)i (Aij)i + ni(zk)i (Aik)i + nlzk)j (Ajk)j + 
+ nlzi)j (Aji)j + nk(zi)k (Aki)k + nk(Zj)k (Akjh (24) 

and the dependence of the activity coefficient of component i in a ternary system 
can be expressed as follows: 

In I'i = [1 - (Zi)J [(Zj)i (Aij)i + (Zk)i (Aik)J + 
+ (Zj)j[(AiJj!(Aji)d [(Aji)j - (Zi)j (Aji)j - (Zk)j (Ajk)d + 
+ (Zk)k[(Aik)k!(Aki)k] [(Aki) - (zih (Aki)k - (Zj)k (Akj)k] . (25) 

Extension of the procedure to M-component system is evident. Each term, Q., 
in Eq. (1) can be written in the form 

M-1 

Qr = L ni[L(Zj)r 2(aij)r(Qi)r]' 
i=1 j>i 

If we introduce new constants 

we can rearrange Eq. (26) and write 
M-1 

Qr = L ni[ L (Zj)r (Aij)r] . 
i=1 j>i 

(26) 

(27) 

(28) 

The contribution of the term Qr to the activity coefficient of component it is obtai
ned by partial differentiation of Eq. (28) according to ni 
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M-1 

(aQr/~njh,p,nj'Fr = L (i~)r (Ajj)r - L (Zj)r [L (Zk)r (Ajk)r (Ajj)r/(Ajj)rJ . (29) 
' j>i ' j=l k>j 

The discussion of restraining conditions (22) is similar to the preceeding ternary 
system. If we suppose ' 

(23) 

the last terms in Eq. (29) can be neglected and the final equations take the form 

M 

fiGE/RT = L nj( I (Zj)j (Aij).) , (30) 
j=l j*i 

(31) 

Equations (30) and (31) characterize the M-component system by 'means of 4M 
constants which are free and which can be evaluated from binary experimental data. 

The two-suffix equation (30) can be converted to other useful types by intro
ducing certain simplifying assumptions. Thus, if we introduce 

(Aij)r In [(Aij)r/(Aji)r] 
(Aji)S = In [(Aji)s!(Aij)S ' [i<j], 

r < s 
(32) 

and define new constants 

Tji = (Ajj)r : 

Gji = (Aji)r/(AjJr, 
(33) 

equations (30) and (31) take the form of NRTL multicomponent type with fully 
free binary constants. 

It must be mentioned that practically all authors who have predicted multicomponen! system's 
, behaviour from binary data by means of NRTL equation15 -17,20 did not take into account the 
restraining conditions22 

and correlated their data in fact by means of equation (31). 

If we assume that 

(Aij)z = (AJih" 

(A jjk"l,2 = (Ajj)r*1.2 = 0, 

(34) 

(35) 
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relation degenerates into Black equation23
. On the' assumption that 

(Ajj)r* I = (Aj;)r*1 = 0, 

equation (1) takes the form of Wohl-van Laar two-suffix type6 ,7. Finally, jf 

(Ajj)1 = (Aj;)1 = (A;j) , 

(Aij)r* I = (Aji)r* 1 = 0, 

equation (1) further simply to Wohl- Margules symmetrical form 6
,7 . 

ADDENDUM 

1293 

(36) 

(37) 

Palmer D . A. and Smith B. D . (Ind. Eng. Chern. Process Des. Develop. 11. 114 (1972» published 
recently new two-parameter local-composition equation capable of correlating systems with 
partial miscibility 

where constants '12' '21 ' e 12 • e 21 are defined by means of equations 

P12 = Pl. 1 , 

(
ft.Hi2 - ft.Hi2 . P12) 

e12 = exp RT + In P'22 ' 

e21 = exp ----~- + In - , 
(

ft.Hi2 - ft.Hi1 Pl.l) 
RT PI! 

P1!> P Z2 denote vapour pressure of pure component 1, 2, ft.Hil' ft.Hi2 heat of vaporization of 
pure component 1, 2 and P12 and ft.H12 are adjusting parameters. 

It can be shown that Palmer-Smith two-parameter equation can be deduced from equation (9) 

if we introduce 

(A) e I p + In ~ , 
(

PI! 2) (ft.Hi2 - ft.Hil P' ) 
211 = '21 - 21 = n Pl.

1 
ex RT Pl.

1 

( 
P12) (ft.Hi2 - ft.Hi2 Pl.2) 

(A 12 }z = '12 e 12 = In -,- exp RT + In P' .' 
P22 22 

(A 21h = '12 = In P~2 . 
P22 
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1294 Hala 

Two constants of equation (9) are then free and two are related by restraining conditions 

(A 21h = (Adl + In (P'1l ! P22 ), 

(A 12 )1 (A 12h (!:l.Hil - !:l.Hi2 Pl.!) 
(A

21
h (A

21
h = exp RT + In P

22 
. 
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